sábado, 2 de novembro de 2013

Classificação dos algoritmos

AOS ALUNOS DE TECNOLOGIA DA INFORMAÇÃO;

CLASSIFICAÇÃO POR IMPLEMENTAÇÃO

Pode-se classificar algoritmos pela maneira pelo qual foram implementados.

  • Recursivo ou iterativo – um algoritmo recursivo possui a característica de invocar a si mesmo repetidamente até que certa condição seja satisfeita e ele é terminado, que é um método comum em programação funcional. Algoritmos iterativos usam estruturas de repetição tais como laços, ou ainda estruturas de dados adicionais tais como pilhas, para resolver problemas. Cada algoritmo recursivo possui um algoritmo iterativo equivalente e vice-versa, mas que pode ter mais ou menos complexidade em sua construção.
  • Lógico  um algoritmo pode ser visto como uma dedução lógica controlada. O componente lógico expressa os axiomas usados na computação e o componente de controle determina a maneira como a dedução é aplicada aos axiomas. Tal conceito é base para a programação lógica.
  • Serial ou paralelo – algoritmos são geralmente assumidos por serem executados instrução a instrução individualmente, como uma lista de execução, o que constitui um algoritmo serial. Tal conceito é base para a programação imperativa. Por outro lado existem algoritmos executados paralelamente, que levam em conta as arquiteturas de computadores com mais de um processador para executar mais de uma instrução ao mesmo tempo. Tais algoritmos dividem os problemas em subproblemas e o delegam a quantos processadores estiverem disponíveis, agrupando no final o resultado dos subproblemas em um resultado final ao algoritmo. Tal conceito é base para a programação paralela. De forma geral, algoritmos iterativos são paralelizáveis; por outro lado existem algoritmos que não são paralelizáveis, chamados então problemas inerentemente seriais.
  • Determinístico ou não-determinístico – algoritmos determinísticos resolvem o problema com uma decisão exata a cada passo enquanto algoritmos não-determinísticos resolvem o problema ao deduzir os melhores passos através de estimativas sob forma de heurísticas.
  • Exato ou aproximado – enquanto alguns algoritmos encontram uma resposta exata, algoritmos de aproximação procuram uma resposta próxima a verdadeira solução, seja através de estratégia determinística ou aleatória. Possuem aplicações práticas sobretudo para problemas muito complexos, do qual uma resposta correta é inviável devido à sua complexidade computacional.


CLASSIFICAÇÃO POR PARADIGMA

Pode-se classificar algoritmos pela metodologia ou paradigma de seu desenvolvimento, tais como:

  • Divisão e conquista – algoritmos de divisão e conquista reduzem repetidamente o problema em sub-problemas, geralmente de forma recursiva, até que o sub-problema é pequeno o suficiente para ser resolvido. Um exemplo prático é o algoritmo de ordenação merge sort. Uma variante dessa metodologia é o decremento e conquista, que resolve um sub-problema e utiliza a solução para resolver um problema maior. Um exemplo prático é o algoritmo para pesquisa binária.
  • Programação dinâmica – pode-se utilizar a programação dinâmica para evitar o re-cálculo de solução já resolvidas anteriormente.
  • Algoritmo ganancioso – um algoritmo ganancioso é similar à programação dinâmica, mas difere na medida em que as soluções dos sub-problemas não precisam ser conhecidas a cada passo, uma escolha gananciosa pode ser feita a cada momento com o que até então parece ser mais adequado.

 Programação linear
  • Redução – a redução resolve o problema ao transformá-lo em outro problema. É chamado também transformação e conquista.
  • Busca e enumeração – vários problemas podem ser modelados através de grafos. Um algoritmo de exploração de grafo pode ser usado para caminhar pela estrutura e retornam informações úteis para a resolução do problema. Esta categoria inclui algoritmos de busca e backtracking.
  • Paradigma heurístico e probabilístico – algoritmos probabilísticos realizam escolhas aleatoriamente. Algoritmos genéticos tentam encontrar a solução através de ciclos de mutações evolucionárias entre gerações de passos, tendendo para a solução exata do problema. Algoritmos heurísticos encontram uma solução aproximada para o problema.

 CLASSIFICAÇÃO POR CAMPO DE ESTUDO

Cada campo da ciência possui seus próprios problemas e respectivos algoritmos adequados para resolvê-los. Exemplos clássicos são algoritmos de busca, de ordenação, de análise numérica, de teoria de grafos, de manipulação de cadeias de texto, de geometria computacional, de análise combinatória, de aprendizagem de máquina, de criptografia, de compressão de dados e de interpretação de texto.


 CLASSIFICAÇÃO POR COMPLEXIDADE

Alguns algoritmos são executados em tempo linear, de acordo com a entrada, enquanto outros são executados em tempo exponencial ou até mesmo nunca terminam de serem executados. Alguns problemas têm múltiplos algoritmos enquanto outros não possuem algoritmos para resolução.



Sequência: "Informação: números binários".

Nenhum comentário:

Postar um comentário

Observação: somente um membro deste blog pode postar um comentário.